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Introduction
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Structural Estimation

• Structural estimation allows us to learn about the effects of
policies that have not yet been implemented.

• In spite of fully specified models, the likelihood is often
intractable and does not exist in closed form.

• Simulated Minimum Distance, methods minimize a
user-specified distance between observed data and data
generated according to the model. E.g. simulated method of
moments, or indirect inference.

• The choice of moments is partly informed by the theory.
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Simulation-based methods

• Advantages
• Conceptually straightforward
• Freedom of the researcher to emphasize the features of the

data upon to which base estimation

• Drawbacks
• Curse of dimensionality
• Large number of moment biases
• It might not be obvious what features to match
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This Paper (I)

• In this paper we propose a new estimator based on the
Generative Adversarial Network (GANs) framework
(Goodfellow et al. 2014) for structural estimation of economic
models.

• The method can be understood as minimizing a data-driven
distance between the real data and the simulated data.

• GANs takes advantage of advances in supervised learning
algorithms to train classifiers to distinguish draws from the
distribution of the data, from simulated data.

• The estimator is defined as the parameter value for which the
discriminator cannot distinguish between simulated data and
real data.
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This Paper (II)

• We show there is a formal connection between the proposed
adversarial estimator and two widely used estimators:

1 Optimally weighted simulated method of moments
2 Non-parametric Simulated Maximum Likelihood

• The method preserves the flexibility of indirect inference
methods in that it allows the researcher to choose the aspects
of the data to use in estimation.

• Recent results on adaptivity of neural networks as sieve
non-parametric estimators provide a rationale for the use of
these methods as classifiers.

• We use the estimator in two different empirical context:

1 Roy Model with two location and two periods (simulated data).
2 Dynamic optimization framework: Why do the elderly save

(De Nardi, French and Jones, 2010) using HRS data
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Pattern Recognition and Supervised Learning

• Classifiers are often a key building block of many AI
algorithms.

• The success of AI technology partly hinges on the ability of
machine learning algorithms to “uncover” what features of the
data are useful for classification, as opposed to hard-coding
what characterizes an object.

• These algorithms are trained using supervised learning , that
is, repeated exposure of correctly labeled data.
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Rembrandt
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A Few of His Paintings
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A Few of Other’s Paintings

Tiziano 1567El Greco 1559Da Vinci 1503 Picasso 1939
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Which Is the Impostor Painting?
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Which Is the Impostor Painting?
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The Model and Estimator
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The Model

• Individual outcomes, yi ∈ RL, are a function, G, of a finite
dimensional vector of parameters θG ∈ Θ ⊂ RK , exogenous
variables, xi ∈ RM , and an error, εi ∈ RL whose distribution
is known. G is not necessarily available in closed form.

• Given θG, and {εi}Hi=1, we assume it is computationally
feasible to obtain a large sample of size H, (ỹi(θG))Hi=1 of
generated/synthetic data:

ỹi(θG) = G(θG;xi, εi).

• Object of interest is θG or a function of it.

• We assume the model is correctly specified.
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The Estimator
Let hi = h(yi, xi) ∈ Rd be a d-dimension vector of functions of the data,
and h̃i(θG) = h(ỹi(θG), xi) be the same functions using simulated data.

For example, hi could be a subvector of (yi, xi).

Let D : RD → [ε, 1− ε] belong to a pre-specified class of functions. We

define the estimator θ̂G as the solution to the following program:

min
θG

max
D∈D

1

N

N∑
i=1

log(D(hi)) +
1

H

H∑
i=1

log(1−D(h̃i(θG))).

• D provides a prediction of the probability that a vector h was drawn
from the true distribution or the simulated distribution for a given
θG. The function D acts as a critic.

• G maximizes missclassification of simulated data into true data.
The economic model acts like a forger.
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In Pictures
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Comments

• This estimation approach is referred as “adversarial” in the
Machine Learning community.

• This approach was first introduced by Goodfellow et al.
(2014) to estimate models to generate images. In that case,
both the discriminator and the structural models are deep
neural networks.

• The function D̂(θG) induces a data-driven distance between
the distribution of the synthetic data and the distribution of
the true data. The estimator minimizes this distance.

• Different choices of D and hi produce different estimators of
θG.
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Example 1: Logit Discriminator
Let D(t) = 1

1+e−t . The estimator is then:

θ̂G = argmin
θG

max
θD

1

N

N∑
i=1

log(D(θ′D · hi)) +
1

H

H∑
i=1

log(1−D(θ′D · h̃i(θG))).

• Interpretation: when H = N , the inner maximization is a logit
maximum likelihood estimation problem, where the outcome
variable is 1 if data is true, and 0 otherwise.

• The F.O.C. of the inner maximization problem for a given θG is:

1

N

N∑
i=1

(1− D̂(hi))hi −
1

H

H∑
i=1

D̂(h̃i(θG))h̃i(θG) = 0,

• When θG = θ0G, θ̂D = op(1), hence:

1

N

N∑
i=1

hi −
1

H

H∑
i=1

h̃i(θ
0
G) ≈ 0.



Introduction The Model and Estimator Implementation Statistical Properties Monte Carlo Simulation Empirical Application Conclusion

Example 2: Oracle Discriminator

When N and H go to infinity and D is any continuous differentiable
function, the solution to the inner maximization problem is:

D∗(h, θG) =
fθ0G(h)

fθ0G(h) + fθG(h)
.

where fθ0G(h) is the pdf of hi, and fθG(h) is the pdf of h̃i(θG).

Hence, θ̂G minimizes the Jensen-Shannon distance between the
distribution of hi and the distribution of h̃i(θG)

min
θG

∫
log

(
fθ0G(h)

fθ0G(h) + fθG(h)

)
fθ0G(h)dh+

∫
log

(
fθG(h)

fθ0G(h) + fθG(h)

)
fθG(h)dh.

The oracle estimator is efficient.
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Example 3: AI/ML Discriminators

• Mutli-layer Neural Networks (e.g. 2 layers):

DN (h, θND) = S(α0 +

d2∑
k=1

γkS(α0,k +

d1∑
j=1

γkjS(αk0,j + λkj
′h)))

where S is an activation functions and θND = (αk0,j , λ
k
j , γk, α0).

• The Universal approximation properties of 1-hidden NN are well
known now for decades (e.g. Chen and White, 1999).

• Recent results show that the convergence rate of multilayer NN in
different estimation context depend on d∗ < d = dim(hi) (e.g.
Mhaskar and Poggio (2017), Bach (2017), Bauer and Kohler
(2019)).

• Other algorithms such as Random Forest (e.g. Athey, Tibshirani,
Wager (2019)) or k-means also show adaptivity properties.
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Implementation
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Computation

Recall the optimization problem:

min
θG

max
D∈D

1

N

N∑
i=1

log(D(hi)) +
1

H

H∑
i=1

log(1−D(h̃i(θG))).

We implement the following iterative algorithm. Starting with a random
initial θ = θ(0):

1 For given θ = θ(s), we solve the inner maximization problem to
obtain D̂(s) using hi and h̃i(θ

(s)). E.g. Estimate a logit regression
by maximum likelihood, or a NN.

2 Given D̂(s)(·) we compute the gradient of the objective function

(numerically) with respect to θ and update θ(s+1) with 1 step
gradient descent.

When D is a NN we make use of off-the-shelf routines relying on
stochastic gradient descent and back-propagation algorithms for efficient
computation of D̂.
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Step 1: Training NN using off-the-shelf optimization
routine

Figure: Loss function over Iterations of the Estimation Algorithm
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Step 2: Gradient descent

Figure: Loss function over Iterations of the Estimation Algorithm
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Misspecification

• When the model is misspecified the criterion can still be
interpreted as a minimization of a distance.

• The discriminator will always be able to “distinguish” between
the two distributions.

• The adversarial framework can be easily combined with robust
inference proposed in Bonhomme and Weidner (2019), where
the estimator is adjusted in the direction of the score of a
larger reference model.

• The score of the model can be obtained as a by-product of
estimating of the oracle discriminator:

∂log(fθ(y))

∂θG
=

1

1−D∗(y, θ)
∂(log(1−D∗(y, θG)))

∂θG
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Statistical Properties
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Logit Discriminator

Assume the following high-level conditions:

1 sup
θG

‖θ̂D(θG)− θ0D(θG)‖ = op(1)

2 θ0D(θG) = 0 if and only if θG = θ0G.

3
√
N(θ̂D(θ

0
G)− θ0D(θ0G))→ N(0, Vθ0)

where θ0D(θG) = plim
N,H

θ̂D(θG).

Then,
√
N
(
θ̂G − θ0G

)
→ N(0, 2 · V ), where

V =

( plim
H→∞

1

H

H∑
i=1

∂h̃i(θ
0
G)

∂θG

′)(
plim
N→∞

1

N

N∑
i=1

h′i · hi

)−1(
plim
H→∞

1

H

H∑
i=1

∂h̃i(θ
0
G)

∂θG

)−1

.

• It can be seen that this estimator has the same asymptotic distribution
(to first order) to optimally weighted Simulated Method of Moments
(SMM) with 1

N

∑N
i=1 hi as moments.
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The Oracle Case: D = D∗

Recall

D∗(h, θ) =
fθ0 (h)

fθ0 (h) + fθ(h)
.

Under regularity conditions we have the following expansion:

√
N
(
θ̂G − θ0G

)
=M−1

 1
√
N

N∑
i=1

∂ log fθ0
G
(hi)

∂θG
−
√
N

H

H∑
i=1

∂ log fθ0
G
(h̃i(θ

0
G))

∂θG


where

M −→ Eθ0
G

(∂ log fθG (h)

∂θG

∣∣∣∣
θ0
G

)2


with Eθ0
G

denoting the expectation taken with respect to the true distribution of the

data.

• If N/H → 0 and 1√
H

∑H
i=1

∂ log f
θ0
G

(h̃i(θ
0
G))

∂θG
= Op(1) the oracle estimator is

efficient.
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The Non-parametric case

We analyze the properties of the GANs estimator in the context of a
parametric generative model. A set of sufficient conditions is:

1 Entropy conditions on the family of D

2 Support conditions on D

3 Correct specification and identification conditions

4 Rate of convergence of discriminator in bce metric is op(N
−1/4)

5 Orthogonality condition to obtain
√
N estimable θG

6 Differentiability of fθ as well as G(θ; ε)

7 N/H → 0

Then √
N(θ̂G − θ0G)→ N(0, I−1θ0 )

where I−1θ0 is the information matrix.
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Monte Carlo Simulation
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Roy Model with two locations

• Model with individual and sector-specific comparative advantage, as
well as sector-specific returns to experience.

• Individuals choose to work among two sectors in exchange of a
salary.

• There are two periods, and location choice in each period is denoted
di1 and di2 respectively.

• Salary in the first period:

logwi1 = µdi1 + σdi1εidi11

• Salary in the second period:

logwi2 = µdi2 + γdi21{di1 = di2}+ σdi2εidi22,

• Individuals choose locations di1 and di2 to maximize their
discounted stream of expected wages over the two periods.

• Data is wages and location choices. Structural parameters are µ1,
µ2, γ1, γ2, σ1, σ2, discount factor β and correlation between
shocks ρs and ρt.
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Estimators (I)

Logit-Discriminator We choose the following 9-dimensional vector of
predictors:

hi =
(
di1, di2, wi1, wi2, di1 · di2, di1 · wi1, di2 · wi2, w2

i1, w
2
i2

)
.

The predictors aim at capturing first and second moments of the wage
functions as well as dependence between choice of location driven by returns to
experience.

Indirect Inference We select the following 9 moments: the regression
coefficients of wit on a constant and dit−1 as well as the variance of the
residuals, separately for observations in each location, the regression
coefficients of dit on a constant and dit−1, and the correlation between the
residuals of the first regression. We use the “Nelder-Mead” optimization
algorithm. The synthetic moments are computed using 10 different sets of
shocks and we take the sample mean across them.
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Estimators (II)

NN-Discriminator Using as inputs hi = (w1, d1, w2, d2), we estimate the
model using 1-hidden layer NN for nodes ranging from 2 to 100 as the
discriminator. We compute the estimator with R using the keras package to
define and optimize the NN. We use the iterative algorithm using 5 different
initial conditions and we define the estimator as the one with lowest criterion.

Random Forest Using as inputs hi = (w1, d1, w2, d2), we estimate the model
with random forest with 100 trees as discriminator. In each tree 2 variables
chosen at random are used for classification. We use the default settings of the
R package randomForest to choose the depth of the trees.
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Results with different NN (I)

µ1 µ2

γ1 γ2
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Results with different NN (II)

σ1 σ2

ρw ρt
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Results with different methods (I)

µ1 µ2

γ1 γ2
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Results with different methods (II)

σ1 σ2

ρw ρt
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Empirical Application
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Why do the Elderly Save? (I)
De Nardi, French, Jones (JPE, 2010)

• We explore the usefulness of the adversarial estimation framework in
rationalizing the saving patterns of the old in the AHEAD data.

• DFJ emphasize three different motives for precautionary savings:

1 Lifespan risk
2 Out-of-pocket medical expense risk (towards end of life)
3 Bequest motives

• Disentangling the different channels is important in order to
evaluate programs such as Medicare and Medicaid, for example.

• The author’s estimation strategy is based on matching median
assets by cohort, permanent income quintile, and period of
observation. There is a total of 120 moments and 2968 individuals.
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Why do the Elderly Save? (II)

• The matching moment estimator is uninformative about the
importance of the bequest motive.

• We consider the adversarial framework estimation for two different
choices of the discriminator:

1 NN discriminator based on individual profiles of assets, lifespan
profiles, permanent income rank, and age in 1996.

2 NN discriminator based on the same variables as before as well
as individual profile of health status, and gender.

• As we will see, health status profiles and gender are an important
source of identification of medical expense and bequest motives.

• Including health status profiles is infeasible in a SMM framework
due to the curse of dimensionality.
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The Model

• Model for heterogeneous single retirees, aged 72 and above, who are
out of the labor force.

• Agents obtain utility from consuming and leaving bequests:

u(c) =
c1−ν

1− ν
φ(e) = θ

(e+ k)1−ν

1− ν
.

• Agents take optimal savings and consumption decisions by
maximizing the sum of the discounted stream of utilities, subject to
their budget constraint

• Agents face three different types of uncertainty: health status,
medical expenses, and survival. These shocks are conditional on
gender, age, health status and permanent income.

• In addition, there is an endogenous consumption floor (c), by which
the government ensures at least a level of consumption equal to c.
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Data

• Data is from the Assets and Health Dynamics of the Oldest Old
(AHEAD) collected by the University of Michigan from 1994 to
2006 every 2 years. The sample consists of non-institutionalized
individuals, aged 70 or above in 1994.

• We follow the authors and focus on single and retired individuals,
which are 3,200 individuals (600 males and 2600 females).

• The survey collects information on age, financial wealth, non-asset
income, and medical expenses. The mean yearly spending is $3, 700,
with standard deviation $13, 400.

• A measure of permanent income ranking is inferred out of the
ranking on individual average income.
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Health shocks × gender as a source of identification
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Cohort 1
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Cohort 3

Asset profiles healthy vs sick by gender – c3 + PI 4&5
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Parameter Estimates

DFJ (2010) Adversarial Adversarial ht × g

(1) (2) (3) (4) (5) (6)

β .97 .97 .97 .97 .97 .97

ν 3.81
(.50)

3.84
(.55)

2.8
(.039)

5.00
(.040)

6.50
(.016)

5.50
(.014)

c ($) 2, 663
(346)

2, 665
(353)

2, 838
(119.48)

4, 475
(180.16)

4, 797
(14.51)

4, 475
(19.84)

θ 0 2, 360
(8,122)

0 8.48
(6.83)

0 119.16
(6.56)

MPC 1 0.12
(NA)

1 0.4
(.039)

1 0.3
(.002)

k (000) − 273
(446)

− 10 − 10

a ($) − 36, 215 − 6, 534 − 4, 200

Loss −1.0819 −1.0763 −1.0808 −1.0832

Preliminary results. Results from specifications (1) and (2) are taken from DFJ (2010), using a SMM estimator.
Specifications (3) and (4) use the Adversarial estimator with discriminator 20 neuron 1 hidden layer network with
14 inputs. Specifications (5) and (6) use the same discriminator with 21 inputs. Specifications (3) to (6) use a
more balanced panel subsample of the original DFJ sample. Standard errors in (3) to (6) are computed as the

variance of the estimated score.
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Conclusion
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Conclusion

• We investigate the use of the Adversarial estimation
framework first introduced in Computer Science for structural
estimation.

• The method shows close connections with other indirect
inference methods that attain efficiency, such as the ones
proposed by Nickl and Potscher (2010) or Fermanian and
Salanie (2004).

• The method can be thought as a way to choose a data-driven
distance between the distribution of the data and the
generated data.

• The use of NN as discriminators have the potential to deal
with the curse of dimensionality and uncover an “efficient”
way to compare the two distributions.

• Computation is transparent.
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